8,051 research outputs found

    Are the Kepler Near-Resonance Planet Pairs due to Tidal Dissipation?

    Get PDF
    The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could have both resonance angles associated with the resonance librating if the orbital eccentricities are sufficiently small, because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider a widely-held scenario in which pairs of planets were captured into first-order resonances by migration due to planet-disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in the planets. In the context of this scenario, we find a constraint on the ratio of the planet's tidal dissipation function and Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough to move many of the planet pairs to the observed separations, suggesting that additional dissipative processes are at play.Comment: 20 pages, including 7 figures; accepted for publication in Ap

    Defect Modes in One-Dimensional Granular Crystals

    Get PDF
    We study the vibrational spectra of one-dimensional statically compressed granular crystals (arrays of elastic particles in contact) containing defects. We focus on the prototypical settings of one or two spherical defects (particles of smaller radii) interspersed in a chain of larger uniform spherical particles. We measure the near-linear frequency spectrum within the spatial vicinity of the defects, and identify the frequencies of the localized defect modes. We compare the experimentally determined frequencies with those obtained by numerical eigen-analysis and by analytical expressions based on few-site considerations. We also present a brief numerical and experimental example of the nonlinear generalization of a single-defect localized mode

    Assessment of ultraviolet light disinfection efficiency of advanced wastewater treatment plant effluent

    Full text link
    Pilot-scale operation of a 3-bank UV disinfection system for filter effluent from the Clark County Advanced Wastewater Treatment Plant has shown {dollar}\u3e{dollar}4-log removal of seeded MS-2 coliphage at UV dosages of 80-100 milliwatt-seconds per square centimeter (mW-s/cm{dollar}\sp2{dollar}), and consistent removal of fecal and total coliforms to less than 2.2 MPN/100 mL at dosages in the vicinity of 50-80 mW-s/cm{dollar}\sp2{dollar} UV transmittance varied from 40% to 70% over the monitoring period and was strongly correlated with turbidity. No diurnal variations in effluent quality were detected during intensive sampling. Effluent quality was most strongly affected by storm events that change filter operation conditions. Rapid biological fouling occurred on the off-line banks. Inorganic fouling of on-line banks was minimal. Assuming a worst case UV transmittance (%) and required treatment dosage (mW-s/cm{dollar}\sp2),{dollar} treatment capacity of this 30-foot long, 6-lamp system was 0.10 million gallons per day

    A Processor Core Model for Quantum Computing

    Get PDF
    We describe an architecture based on a processing 'core' where multiple qubits interact perpetually, and a separate 'store' where qubits exist in isolation. Computation consists of single qubit operations, swaps between the store and the core, and free evolution of the core. This enables computation using physical systems where the entangling interactions are 'always on'. Alternatively, for switchable systems our model constitutes a prescription for optimizing many-qubit gates. We discuss implementations of the quantum Fourier transform, Hamiltonian simulation, and quantum error correction.Comment: 5 pages, 2 figures; improved some arguments as suggested by a refere

    On the 2:1 Orbital Resonance in the HD 82943 Planetary System

    Full text link
    We present an analysis of the HD 82943 planetary system based on a radial velocity data set that combines new measurements obtained with the Keck telescope and the CORALIE measurements published in graphical form. We examine simultaneously the goodness of fit and the dynamical properties of the best-fit double-Keplerian model as a function of the poorly constrained eccentricity and argument of periapse of the outer planet's orbit. The fit with the minimum chi_{nu}^2 is dynamically unstable if the orbits are assumed to be coplanar. However, the minimum is relatively shallow, and there is a wide range of fits outside the minimum with reasonable chi_{nu}^2. For an assumed coplanar inclination i = 30 deg. (sin i = 0.5), only good fits with both of the lowest order, eccentricity-type mean-motion resonance variables at the 2:1 commensurability, theta_1 and theta_2, librating about 0 deg. are stable. For sin i = 1, there are also some good fits with only theta_1 (involving the inner planet's periapse longitude) librating that are stable for at least 10^8 years. The libration semiamplitudes are about 6 deg. for theta_1 and 10 deg. for theta_2 for the stable good fit with the smallest libration amplitudes of both theta_1 and theta_2. We do not find any good fits that are non-resonant and stable. Thus the two planets in the HD 82943 system are almost certainly in 2:1 mean-motion resonance, with at least theta_1 librating, and the observations may even be consistent with small-amplitude librations of both theta_1 and theta_2.Comment: 24 pages, including 10 figures; accepted for publication in Ap

    Inherent Structures for Soft Long-Range Interactions in Two-Dimensional Many-Particle Systems

    Full text link
    We generate inherent structures, local potential-energy minima, of the "kk-space overlap potential" in two-dimensional many-particle systems using a cooling and quenching simulation technique. The ground states associated with the kk-space overlap potential are stealthy ({\it i.e.,} completely suppress single scattering of radiation for a range of wavelengths) and hyperuniform ({\it i.e.,} infinite wavelength density fluctuations vanish). However, we show via quantitative metrics that the inherent structures exhibit a range of stealthiness and hyperuniformity depending on the fraction of degrees of freedom that are constrained. Inherent structures in two dimensions typically contain five-particle rings, wavy grain boundaries, and vacancy-interstitial defects. The structural and thermodynamic properties of inherent structures are relatively insensitive to the temperature from which they are sampled, signifying that the energy landscape is relatively flat and devoid of deep wells. Using the nudged-elastic-band algorithm, we construct paths from ground-state configurations to inherent structures and identify the transition points between them. In addition, we use point patterns generated from a random sequential addition (RSA) of hard disks, which are nearly stealthy, and examine the particle rearrangements necessary to make the configurations absolutely stealthy. We introduce a configurational proximity metric to show that only small local, but collective, particle rearrangements are needed to drive initial RSA configurations to stealthy disordered ground states. These results lead to a more complete understanding of the unusual behaviors exhibited by the family of "collective-coordinate" potentials to which the kk-space overlap potential belongs.Comment: 36 pages, 16 figure

    Inherent Mach-Zehnder interference with "which-way" detection for single particle scattering in one dimension

    Full text link
    We study the coherent transport of single photon in a one-dimensional coupled-resonator-array, "non-locally" coupled to a two-level system. Since its inherent structure is a Mach-Zehnder interferometer, we explain the destructive interference phenomenon of the transmission spectrums according to the effect of which-way detection. The quantum realization of the present model is a nano-electromechanical resonator arrays with two nearest resonators coupled to a single spin via their attached magnetic tips. Its classical simulation is a waveguide of coupled defected cavity array with double couplings to a side defected cavity.Comment: 5 papges, 4 figure

    Integration of a wireless sensor network project for introductory circuits and systems teaching

    Get PDF
    This paper presents an integration of a wireless sensor network design project in an introductory course about circuits and systems. In the project, students will design a wireless sensor network that constitutes of sensors, for a creative surveillance application. Through a versatile project vehicle, project-oriented learning modules, a comprehensive assessment strategy and public learning communities, students can learn contemporary concepts of circuits and systems from the system perspective, as well as develop ability to design a basic electronic system. © 2013 IEEE.published_or_final_versio

    Incorporating Inertia Into Multi-Agent Systems

    Get PDF
    We consider a model that demonstrates the crucial role of inertia and stickiness in multi-agent systems, based on the Minority Game (MG). The inertia of an agent is introduced into the game model by allowing agents to apply hypothesis testing when choosing their best strategies, thereby reducing their reactivity towards changes in the environment. We find by extensive numerical simulations that our game shows a remarkable improvement of global cooperation throughout the whole phase space. In other words, the maladaptation behavior due to over-reaction of agents is removed. These agents are also shown to be advantageous over the standard ones, which are sometimes too sensitive to attain a fair success rate. We also calculate analytically the minimum amount of inertia needed to achieve the above improvement. Our calculation is consistent with the numerical simulation results. Finally, we review some related works in the field that show similar behaviors and compare them to our work.Comment: extensively revised, 8 pages, 10 figures in revtex
    corecore